Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.138
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2314772121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621122

RESUMO

Dynamic networks composed of constituents that break and reform bonds reversibly are ubiquitous in nature owing to their modular architectures that enable functions like energy dissipation, self-healing, and even activity. While bond breaking depends only on the current configuration of attachment in these networks, reattachment depends also on the proximity of constituents. Therefore, dynamic networks composed of macroscale constituents (not benefited by the secondary interactions cohering analogous networks composed of molecular-scale constituents) must rely on primary bonds for cohesion and self-repair. Toward understanding how such macroscale networks might adaptively achieve this, we explore the uniaxial tensile response of 2D rafts composed of interlinked fire ants (S. invicta). Through experiments and discrete numerical modeling, we find that ant rafts adaptively stabilize their bonded ant-to-ant interactions in response to tensile strains, indicating catch bond dynamics. Consequently, low-strain rates that should theoretically induce creep mechanics of these rafts instead induce elastic-like response. Our results suggest that this force-stabilization delays dissolution of the rafts and improves toughness. Nevertheless, above 35[Formula: see text] strain low cohesion and stress localization cause nucleation and growth of voids whose coalescence patterns result from force-stabilization. These voids mitigate structural repair until initial raft densities are restored and ants can reconnect across defects. However mechanical recovery of ant rafts during cyclic loading suggests that-even upon reinstatement of initial densities-ants exhibit slower repair kinetics if they were recently loaded at faster strain rates. These results exemplify fire ants' status as active agents capable of memory-driven, stimuli-response for potential inspiration of adaptive structural materials.


Assuntos
Formigas , 60601 , Animais , Formigas/fisiologia , Física , Microdomínios da Membrana
2.
Sci Total Environ ; 927: 172163, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569958

RESUMO

The early growth stage of plants is vital to community diversity and community regeneration. The Janzen-Connell hypothesis predicts that conspecific density dependence lowers the survival of conspecific seedlings by attracting specialist natural enemies, promoting the recruitment and performance of heterospecific neighbors. Recent work has underscored how this conspecific negative density dependence may be mediated by mutualists - such as how mycorrhizal fungi may mediate the accrual of host-specific pathogens beneath the crown of conspecific adult trees. Aboveground mutualist and enemy interactions exist as well, however, and may provide useful insight into density dependence that are as of yet unexplored. Using a long-term seedling demographic dataset in a subtropical forest plot in central China, we confirmed that conspecific neighborhoods had a significant negative effect on seedling survival in this subtropical forest. Furthermore, although we detected more leaf damage in species that were closely related to ants, we found that the presence of ants had significant positive effects on seedling survival. Beside this, we also found a negative effect of ant appearance on seedling growth which may reflect a trade-off between survival and growth. Overall, our findings suggested that ants and conspecific neighborhoods played important but inverse roles on seedling survival and growth. Our results suggest ants may mediate the influence of conspecific negative density dependence on seedling survival at community level.


Assuntos
Formigas , Florestas , Herbivoria , Plântula , China , Animais , Plântula/fisiologia , Formigas/fisiologia , Árvores/fisiologia , Densidade Demográfica , Simbiose
3.
PLoS One ; 19(4): e0299432, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38652728

RESUMO

Collectively searching animals might be expected to coordinate with their groupmates to cover ground more evenly or efficiently than uncoordinated groups. Communication can lead to coordination in many ways. Previous work in ants suggests that chemical 'footprints', left behind by individuals as they walk, might serve this function by modulating the movement patterns of following ants. Here, we test this hypothesis by considering the two predictions that, first, ants may turn away from sites with higher footprint concentrations (klinotaxis), or, second, that they may change their turning patterns depending on the presence of footprints (klinokinesis). We tracked 5 whole colonies of Temnothorax rugatulus ants in a large arena over 5h. We approximated the footprint concentration by summing ant visitations for each point in the arena and calculated the speed and local path straightness for each point of the ant trajectories. We counterintuitively find that ants walk slightly faster and straighter in areas with fewer footprints. This is partially explained by the effect that ants who start out from the nest walking straighter move on average further away from the nest, where there are naturally fewer footprints, leading to an apparent relationship between footprint density and straightness However, ants walk slightly faster and straighter off footprints even when controlling for this effect. We tested for klinotaxis by calculating the footprint concentrations perceived by the left and right antennae of ants and found no evidence for a turning-away (nor turning-towards) behavior. Instead, we found noticeable effects of environmental idiosyncrasies on the behavior of ants which are likely to overpower any reactions to pheromones. Our results indicate that search density around an ant colony is affected by several independent processes, including individual differences in movement pattern, local spatial heterogeneities, and ants' reactions to chemical footprints. The multitude of effects illustrates that non-communicative coordination, individual biases and interactions with the environment might have a greater impact on group search efficiency and exploratory movements than pheromone communication.


Assuntos
Formigas , Formigas/fisiologia , Animais , Movimento/fisiologia , Comportamento Animal/fisiologia , Caminhada/fisiologia
4.
Curr Biol ; 34(8): R318-R320, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38653199

RESUMO

Ant fossils from the Cretaceous are rare but critical for understanding the early evolution of this incredibly successful group of animals. New amber fossils fill important gaps, revealing patterns of death, survival, and radiation around the end Cretaceous extinction.


Assuntos
Âmbar , Formigas , Evolução Biológica , Extinção Biológica , Fósseis , Formigas/fisiologia , Animais
5.
Sci Rep ; 14(1): 7883, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570567

RESUMO

In this work, we identified the trail pheromone of the ant Crematogaster scutellaris. We combined gas chromatography-mass spectrometry analysis of extracts from the hind tibia, the location of the respective glands, with automated trail following assays. The study found tridecan-2-ol to be the strongest discriminator between hind tibia and other body part extracts. Tridecan-2-ol elicited trail-following behaviour at concentrations of 1 ng/µL. A separation of the enantiomers showed responses to (R)-tridecan-2-ol already at 0.001 ng/µL and only at a 1000-fold higher concentration for (S)-tridecan-2-ol, suggesting that only the R enantiomer is used by C. scutellaris in its natural environment. We also found strong behavioural responses to 2-dodecanol, a substance that was not detectable in the hind tibia extract of C. scutellaris, but which has been reported to be the trail pheromone of the related species C. castanea. We discuss the contribution of these results to the 'dissection and reconstruction' of strategies and mechanisms underlying the social organization of ants.


Assuntos
Formigas , Feromônios , Animais , Feromônios/análise , Formigas/fisiologia , Comportamento Animal , Comportamento Alimentar
6.
Curr Biol ; 34(8): 1755-1761.e6, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38521061

RESUMO

All ∼14,000 extant ant species descended from the same common ancestor, which lived ∼140-120 million years ago (Ma).1,2 While modern ants began to diversify in the Cretaceous, recent fossil evidence has demonstrated that older lineages concomitantly occupied the same ancient ecosystems.3 These early-diverging ant lineages, or stem ants, left no modern descendants; however, they dominated the fossil record throughout the Cretaceous until their ultimate extinction sometime around the K-Pg boundary. Even as stem ant lineages appear to be diverse and abundant throughout the Cretaceous, the extent of their longevity in the fossil record and circumstances contributing to their extinction remain unknown.3 Here we report the youngest stem ants, preserved in ∼77 Ma Cretaceous amber from North Carolina, which illustrate unexpected morphological stability and lineage persistence in this enigmatic group, rivaling the longevity of contemporary ants. Through phylogenetic reconstruction and morphometric analyses, we find evidence that total taxic turnover in ants was not accompanied by a fundamental morphological shift, in contrast to other analogous stem extinctions such as theropod dinosaurs. While stem taxa showed broad morphological variation, high-density ant morphospace remained relatively constant through the last 100 million years, detailing a parallel, but temporally staggered, evolutionary history of modern and stem ants.


Assuntos
Âmbar , Formigas , Evolução Biológica , Fósseis , Filogenia , Animais , Formigas/fisiologia , Formigas/anatomia & histologia , Formigas/classificação , Fósseis/anatomia & histologia , North Carolina , Extinção Biológica
7.
J Insect Physiol ; 154: 104629, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38430966

RESUMO

Workers of social hymenopterans (ants, bees and wasps) display specific tasks depending on whether they are younger or older. The relative importance of behavior and age in modulating immune function has seldom been addressed. We compared the strength of encapsulation-melanization immune response (hereafter melanotic encapsulation) in paper wasps displaying age polyethism or experimentally prevented from behavioral specialization. Foragers of Polybia paulista had higher melanotic encapsulation than guards, regardless of their age. Nevertheless, melanotic encapsulation decreased with age when wasps were prevented from behavioral specialization. Thus, in this species, worker melanotic encapsulation seems more sensitive to task than age. Foraging is considered one of the riskier behaviors in terms of pathogen exposure, so upregulating melanotic encapsulation in foragers can possibly improve both individual and colony-level resistance against infections.


Assuntos
Formigas , Vespas , Abelhas , Animais , Vespas/fisiologia , Comportamento Social , Comportamento Animal/fisiologia , Formigas/fisiologia , Imunidade
8.
Environ Entomol ; 53(2): 230-236, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38437574

RESUMO

Terminalia argentea Mart. (Combretaceae), native to Brazil, is used in habitat restoration programs. Arthropods are bioindicators because their populations reflect changes in the environment. We evaluated the recovery of a degraded area by using ecological indices and analyzing arthropod interactions on T. argentea plants. The richness and diversity of sap-sucking Hemiptera and the abundance of tending ants and Sternorrhyncha predators increased with the number of T. argentea leaves. The correlation of the abundance of tending ants and Sternorrhyncha predators was positive with that of the sap-sucking Hemiptera, and the abundance of Sternorrhyncha predators was negative with that of tending ants and sap-sucking Hemiptera. The positive correlation between the abundance, richness, and diversity of insect groups and numbers of T. argentea leaves is an example of the bottom-up regulation mechanism, with the population dynamics of the lower trophic levels dictating those of higher trophic levels. The contribution of T. argentea, a host plant of many arthropods, to the recovery of ecological relationships between organisms in degraded ecosystems is important.


Assuntos
Formigas , Artrópodes , Combretaceae , Hemípteros , Myrtales , Terminalia , Animais , Ecossistema , Árvores , Insetos/fisiologia , Hemípteros/fisiologia , Formigas/fisiologia , Plantas
9.
Sci Rep ; 14(1): 5727, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459134

RESUMO

Few studies have investigated the relative contribution of specific nutrients to momentary and season-long foraging responses by ants. Using western carpenter ants, Camponotus modoc, and European fire ants, Myrmica rubra, as model species, we: (1) tested preferential consumption of various macro- and micro-nutrients; (2) compared consumption of preferred macro-nutrients; (3) investigated seasonal shifts (late May to mid-September) in nutrient preferences; and (4) tested whether nutrient preferences of C. modoc and M. rubra pertain to black garden ants, Lasius niger, and thatching ants, Formica aserva. In laboratory and field experiments, we measured nutrient consumption by weighing Eppendorf tubes containing aqueous nutrient solutions before and after feeding by ants. Laboratory colonies of C. modoc favored nitrogenous urea and essential amino acids (EAAs), whereas M. rubra colonies favored sucrose. Field colonies of C. modoc and M. rubra preferentially consumed EAAs and sucrose, respectively, with no sustained shift in preferred macro-nutrient over the course of the foraging season. The presence of a less preferred macro-nutrient in a nutrient blend did not diminish the blend's 'appeal' to foraging ants. Sucrose and EAAs singly and in combination were equally consumed by L. niger, whereas F. aserva preferred EAAs. Baits containing both sucrose and EAAs were consistently consumed by the ants studied in this project and should be considered for pest ant control.


Assuntos
Formigas , Animais , Estações do Ano , Formigas/fisiologia , Nutrientes , Sacarose , Comportamento Alimentar
10.
Proc Natl Acad Sci U S A ; 121(9): e2201598121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38346209

RESUMO

Mechanical grasping and holding devices depend upon a firm and controlled grip. The possibility to improve this gripping performance is severely limited by the need for miniaturization in many applications, such as robotics, microassembly, or surgery. In this paper, we show how this gripping can be improved in one application (the endoscopic needle holder) by understanding and imitating the design principles that evolution has selected to make the mandibles of an ant a powerful natural gripping device. State-of-the-art kinematic, morphological, and engineering approaches show that the ant, in contrast to other insects, has considerable movement within the articulation and the jaw´s rotational axis. We derived three major evolutionary design principles from the ant's biting apparatus: 1) a mobile joint axis, 2) a tilted orientation of the mandibular axis, and 3) force transmission of the adductor muscle to the tip of the mandible. Application of these three principles to a commercially available endoscopic needle holder resulted in calculated force amplification up to 296% and an experimentally measured one up to 433%. This reduced the amount of translations and rotations of the needle, compared to the needle's original design, while retaining its size or outer shape. This study serves as just one example showing how bioengineers might find elegant solutions to their design problems by closely observing the natural world.


Assuntos
Formigas , Mandíbula , Animais , Mandíbula/anatomia & histologia , Agulhas , Formigas/fisiologia , Fenômenos Biomecânicos
11.
Proc Natl Acad Sci U S A ; 121(8): e2320764121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346192

RESUMO

Many animal species rely on the Earth's magnetic field during navigation, but where in the brain magnetic information is processed is still unknown. To unravel this, we manipulated the natural magnetic field at the nest entrance of Cataglyphis desert ants and investigated how this affects relevant brain regions during early compass calibration. We found that manipulating the Earth's magnetic field has profound effects on neuronal plasticity in two sensory integration centers. Magnetic field manipulations interfere with a typical look-back behavior during learning walks of naive ants. Most importantly, structural analyses in the ants' neuronal compass (central complex) and memory centers (mushroom bodies) demonstrate that magnetic information affects neuronal plasticity during early visual learning. This suggests that magnetic information does not only serve as a compass cue for navigation but also as a global reference system crucial for spatial memory formation. We propose a neural circuit for integration of magnetic information into visual guidance networks in the ant brain. Taken together, our results provide an insight into the neural substrate for magnetic navigation in insects.


Assuntos
Formigas , Animais , Formigas/fisiologia , Aprendizagem/fisiologia , Encéfalo , Plasticidade Neuronal/fisiologia , Fenômenos Magnéticos , Comportamento de Retorno ao Território Vital/fisiologia , Sinais (Psicologia) , Clima Desértico
12.
Neuron ; 112(3): 336-339, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38330899

RESUMO

Daniel Kronauer explores the behavioral genetics and neurobiology of ants, tracing their evolution from solitary ancestors to supremely social insects. In this interview with Neuron, he discusses his lab's efforts to develop a new ant model species and describes how his passion for natural history inspires his research.


Assuntos
Formigas , Animais , Filogenia , Formigas/fisiologia , Insetos , Neurobiologia
13.
Curr Biol ; 34(4): 902-909.e6, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38307022

RESUMO

In animals, parasitic infections impose significant fitness costs.1,2,3,4,5,6 Infected animals can alter their feeding behavior to resist infection,7,8,9,10,11,12 but parasites can manipulate animal foraging behavior to their own benefits.13,14,15,16 How nutrition influences host-parasite interactions is not well understood, as studies have mainly focused on the host and less on the parasite.9,12,17,18,19,20,21,22,23 We used the nutritional geometry framework24 to investigate the role of amino acids (AA) and carbohydrates (C) in a host-parasite system: the Argentine ant, Linepithema humile, and the entomopathogenic fungus, Metarhizium brunneum. First, using 18 diets varying in AA:C composition, we established that the fungus performed best on the high-amino-acid diet 1:4. Second, we found that the fungus reached this optimal diet when given various diet pairings, revealing its ability to cope with nutritional challenges. Third, we showed that the optimal fungal diet reduced the lifespan of healthy ants when compared with a high-carbohydrate diet but had no effect on infected ants. Fourth, we revealed that infected ant colonies, given a choice between the optimal fungal diet and a high-carbohydrate diet, chose the optimal fungal diet, whereas healthy colonies avoided it. Lastly, by disentangling fungal infection from host immune response, we demonstrated that infected ants foraged on the optimal fungal diet in response to immune activation and not as a result of parasite manipulation. Therefore, we revealed that infected ant colonies chose a diet that is costly for survival in the long term but beneficial in the short term-a form of collective self-medication.


Assuntos
Formigas , Micoses , Animais , Formigas/fisiologia , Ingestão de Alimentos , Aminoácidos , Carboidratos
14.
J Invertebr Pathol ; 203: 108056, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176676

RESUMO

Solenopsis invicta virus 3 (SINV-3) has been shown to cause significant mortality among all stages of its host, Solenopsis invicta. One impact of the virus is alteration of worker ant foraging behavior, which results in colony starvation and collapse over time. Additionally, it has been hypothesized that SINV-3 infection of S. invicta may disrupt worker ant brood care behavior. To investigate this possibility, various combinations of SINV-3-infected and -uninfected adult (worker) and immature (brood) stages were placed together and monitored using the response variables, mortality, egg hatch, and virus load. While significant differences in percent cumulative S. invicta worker ant mortality among six combinations of SINV-3-infected and -uninfected stages were observed, no significant differences in percent cumulative mortality of S. invicta larvae or pupae were observed. No significant differences in egg hatch were observed among SINV-3-uninfected, SINV-3-infected (colony-treated and queen-treated), and starved colonies. Eggs hatched normally in 10-12 days for all treatments indicating that egg care by worker ants was unaffected by SINV-3 infection status. The study further clarifies SINV-3 pathogenesis in its host, S. invicta. Larval mortality in SINV-3-infected colonies does not appear to be caused by worker ant neglect. S. invicta brood under the care of SINV-3-infected worker ants did not exhibit higher mortality rates compared with those tended by SINV-3-uninfected worker ants.


Assuntos
Formigas , Vírus de RNA , Animais , 60601 , Vírus de RNA/fisiologia , Formigas/fisiologia , Larva
15.
Commun Biol ; 7(1): 84, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216747

RESUMO

Invasive ants, such as the Argentine ant, pose a severe economic and ecological threat. Despite advancements in baiting techniques, effectively managing established ant populations remains a daunting challenge, often ending in failure. Ant colonies employ behavioural immunity against pathogens, raising the question of whether ants can collectively respond to toxic baits. This study investigates whether ant colonies actively abandon palatable but harmful food sources. We provided two sucrose feeders, each generating a new foraging trail, with one transitioning to offering toxic food. Six hours later, ant activity on that path decreases, while activity on the non-toxic food and the trunk trail remains unaffected, excluding factors like population decline or satiation as reasons for the activity decline. Laboratory experiments confirmed that ants remained alive six hours after ingesting toxic food. Ant presence remains low on the toxic food path for days, gradually decreasing along the nearest section of the trunk trail. This abandonment behaviour minimises the entry of harmful food into the nest, acting as a protective social mechanism. The evasion of toxic bait-treated areas likely contributes considerably to control failures. Understanding the behavioural response to toxic baits is essential for developing effective strategies to combat invasive ant species.


Assuntos
Formigas , Inseticidas , Animais , Controle de Insetos/métodos , Formigas/fisiologia
16.
Science ; 383(6681): 433-438, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38271503

RESUMO

Mutualisms often define ecosystems, but they are susceptible to human activities. Combining experiments, animal tracking, and mortality investigations, we show that the invasive big-headed ant (Pheidole megacephala) makes lions (Panthera leo) less effective at killing their primary prey, plains zebra (Equus quagga). Big-headed ants disrupted the mutualism between native ants (Crematogaster spp.) and the dominant whistling-thorn tree (Vachellia drepanolobium), rendering trees vulnerable to elephant (Loxodonta africana) browsing and resulting in landscapes with higher visibility. Although zebra kills were significantly less likely to occur in higher-visibility, invaded areas, lion numbers did not decline since the onset of the invasion, likely because of prey-switching to African buffalo (Syncerus caffer). We show that by controlling biophysical structure across landscapes, a tiny invader reconfigured predator-prey dynamics among iconic species.


Assuntos
Formigas , Equidae , Cadeia Alimentar , Leões , 60587 , Simbiose , Animais , Formigas/fisiologia , Elefantes , Búfalos
17.
Artigo em Inglês | MEDLINE | ID: mdl-37378739

RESUMO

We conducted laboratory experiments using Japanese carpenter ants (Camponotus japonicus) to investigate whether movement during visual learning can influence the learning performance of ant foragers. We performed three different experiments. In the first experiment, the ants could move freely in a straight maze during the visual learning. The ants in the experiments two and three were fixed to a certain position during the visual learning training. A distinct difference between these two experiments was that the ants in one experiment could perceive an approaching visual stimulus during the training, although they were fixed. After training phases, a Y-maze test was performed. One arm of the Y-maze had a visual stimulus presented to the ants during the training. We found that the ants in the first experiment showed rapid learning and correctly selected the landmark arm. However, the ants in the experiments two and three did not exhibit any preference for the chosen arm. Interestingly, we found differences in the time spent around a certain location in the Y-maze between the experiments two and three. These results suggest that movement during visual learning may influence the rapid learning of ant foragers.


Assuntos
Formigas , Animais , Formigas/fisiologia , Aprendizagem em Labirinto , Movimento
18.
Int J Biometeorol ; 68(2): 263-277, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38047942

RESUMO

The selection of explanatory variables is important in modeling prediction of changes in species distribution in response to climate change. In this study, we evaluated the importance of variable selection in species distribution models. We compared two different types of models for predicting the distribution of ant species: temperature-only and both temperature and precipitation. Ants were collected at 343 forest sites across South Korea from 2006 through 2009. We used a generalized additive model (GAM) to predict the future distribution of 16 species that showed significant responses to changes in climatic factors (temperature and/or precipitation). Four types of GAMs were constructed: temperature, temperature with interaction of precipitation, temperature and precipitation without interaction, and temperature and precipitation with interaction. Most species displayed similar results between the temperatureonly and the temperature and precipitation models. The results for predicted changes in species richness were different from the temperature-only model. This indicates higher uncertainty in the prediction of species richness, which is obtained by combining the prediction results of distribution change for each species, than in the prediction of distribution change. The turnover rate of the ant assemblages was predicted to increase with decreases in temperature and increases in elevation, which was consistent with other studies. Finally, our results showed that the prediction of the distribution or diversity of organisms responding to climate change is uncertain because of the high variability of the model outputs induced by the variables used in the models.


Assuntos
Formigas , Animais , Formigas/fisiologia , Temperatura , Florestas , Mudança Climática , República da Coreia
19.
J Anim Ecol ; 93(3): 319-332, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38155266

RESUMO

Ants are important bioturbators that actively produce biopores and move soil particles. They could be particularly affected by global warming as they are ectotherms. Nevertheless, they can indirectly regulate their temperature, through changes in their circadian cycles and the architecture of their nests (e.g. digging deep nests or using insulating materials). Nest architecture has been considered an expanded functional trait of ant colonies and thus sensitive to environmental changes such as increasing temperatures. This work aimed to study the nest architecture of ants as a functional trait and its effects on soil bioturbation. We hypothesized that, when exposed to increased surface temperatures, ants would increase their excavation activities, build deeper nests and alter the layout of chambers to maintain their preferred temperature and humidity, thus enhancing soil porosity. We allowed 17 young Lasius niger ant colonies to excavate nests in soil columns exposed to three surface temperatures (mild, n = 5; medium, n = 6; and high, n = 6) for 100 days. We measured the amount of soil excavated weekly and took X-ray scans of the soil column on Days 7, 14, 28, and 88 to characterize the three-dimensional structure of the nests (depth, shape, volume of chambers and tunnels). We then collected the colonies and measured their growth during the experiment, and the size and weight of workers. Ants reacted to surface temperature. Colonies exposed to medium and high temperatures excavated larger and deeper nests than those exposed to mild temperature. Nests excavated under high and medium temperatures had the same maximal depth, but chambers were located deeper in the former, which were further characterized by the refiling of some of the upper chambers. Colonies grew well in all treatments, although less under mild temperature. They produced normal-sized workers despite differences in surface temperature. Overall, these results suggest that ants exposed to higher temperatures live in deeper chambers. This study shows that surface temperature affects ant nest architecture, confirming its status as extended phenotype and highlighting its flexibility over time, which has in turn consequences on soil porosity.


Assuntos
Formigas , Animais , Temperatura , Formigas/fisiologia , Comportamento de Nidação/fisiologia , Solo/química
20.
J Biol Chem ; 300(1): 105577, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110035

RESUMO

Harvester ants (genus Pogonomyrmex) are renowned for their stings which cause intense, long-lasting pain, and other neurotoxic symptoms in vertebrates. Here, we show that harvester ant venoms are relatively simple and composed largely of peptide toxins. One class of peptides is primarily responsible for the long-lasting local pain of envenomation via activation of peripheral sensory neurons. These hydrophobic, cysteine-free peptides potently modulate mammalian voltage-gated sodium (NaV) channels, reducing the voltage threshold for activation and inhibiting channel inactivation. These toxins appear to have evolved specifically to deter vertebrates.


Assuntos
Formigas , Mordeduras e Picadas , Dor , Peptídeos , Toxinas Biológicas , Bloqueadores do Canal de Sódio Disparado por Voltagem , Canais de Sódio Disparados por Voltagem , Animais , Formigas/patogenicidade , Formigas/fisiologia , Mordeduras e Picadas/complicações , Dor/induzido quimicamente , Dor/complicações , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/toxicidade , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Toxinas Biológicas/química , Toxinas Biológicas/farmacologia , Toxinas Biológicas/toxicidade , Vertebrados , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/toxicidade , Canais de Sódio Disparados por Voltagem/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...